Output/Input

From HaskellWiki
Revision as of 07:08, 3 March 2022 by Atravers (talk | contribs) (Questions relocated to "The I/O quandary")
Jump to: navigation, search


Clearing away the smoke and mirrors

The implementation in GHC uses the following one:

type IO a  =  World -> (a, World)

An IO computation is a function that (logically) takes the state of the world, and returns a modified world as well as the return value. Of course, GHC does not actually pass the world around; instead, it passes a dummy “token,” to ensure proper sequencing of actions in the presence of lazy evaluation, and performs input and output as actual side effects!

A History of Haskell: Being Lazy With Class, Paul Hudak, John Hughes, Simon Peyton Jones and Philip Wadler.

...so what starts out as an I/O action of type:

World -> (a, World)

is changed by GHC to approximately:

() -> (a, ())

As the returned unit-value () contains no useful information, that type can be simplified further:

() -> a

Why "approximately"? Because "logically" a function in Haskell has no observable effects.


Previously seen

The type () -> a (or variations of it) have appeared elsewhere - examples include:

The use of λ, and in particular (to avoid an irrelevant bound variable) of λ() , to delay and possibly avoid evaluation is exploited repeatedly in our model of ALGOL 60. A function that requires an argument-list of length zero is called a none-adic function.

(\ () -> ) :: () -> a
abstype 'a Job = JOB of unit -> 'a

data Job a = JOB (() -> a)

A value of type Obs 𝜏 is called an observer. Such a value observes (i.e. views or inspects) a state and returns a value of type 𝜏. [...] An observer type Obs 𝜏 may be viewed as an implicit function space from the set of states to the type 𝜏.

type Obs tau = State -> tau
  • page 15 of Non-Imperative Functional Programming by Nobuo Yamashita:
type a :-> b = OI a -> b
data Time_ a = GetCurrentTime (UTCTime -> a)
data IO a = IO (() -> a)

[...] The type Id can be hidden by the synonym data type

:: Create a  :==  Id -> a

type Create a = Id -> a

An early implementation of Fran represented behaviors as implied in the formal semantics:

data Behavior a = Behavior (Time -> a)

The type 'a io is represented by a function expecting a dummy argument of type unit and returning a value of type 'a.

type 'a io = unit -> a

type Io a = () -> a

But I can already tell you why we cannot follow other languages and use simply X or () -> X.

newtype OI a = forall o i. OI (FFI o i) o (i -> a) deriving Functor

type Oi a = forall i . i -> a
class IO[A](run: () => A)

class Io a where run :: () -> a

Let's say you want to implement IO in SML :

structure Io : MONAD =
struct
  type 'a t = unit -> 'a
         ⋮
end

type T a = () -> a
newtype IO a = IO { runIO :: () -> a }
newtype Supply r a = Supply { runSupply :: r -> a }

As long as we have its special case IO c = () ~> c, we can represent (up to isomorphism) […] a ~> c […]

abstract class SimpleIO<A> {
    abstract A run()
}

class SimpleIO a where
    run :: () -> a

Of these, it is the implementation of OI a in Yamashita's oi package which is most interesting as its values are monousal - once used, their contents remain constant. This single-use property also appears in the implementation of the abstract decision type described by F. Warren Burton in Nondeterminism with Referential Transparency in Functional Programming Languages.


IO, redefined

Based on these and other observations, a reasonable distillment of these examples would be OI -> a, which then implies:

type IO a = OI -> a

Using Burton's pseudodata approach:

 -- abstract; single-use I/O-access mediator
data Exterior
getchar :: Exterior -> Char
putchar :: Char -> Exterior -> ()

 -- from section 2 of Burton's paper
data Tree a = Node { contents :: a,
                     left     :: Tree a,
                     right    :: Tree a }

 -- utility definitions
type OI  =  Tree Exterior

getChar' :: OI -> Char
getChar' =  getchar . contents

putChar' :: Char -> OI -> ()
putChar' c = putchar c . contents

part     :: OI -> (OI, OI)
parts    :: OI -> [OI]

part t   =  (left t, right t)
parts t  =  let !(t1, t2) = part t in
            t1 : parts t2

Of course, in an actual implementation OI would be abstract like World, and for similar reasons. This permits a simpler implementation for OI and its values, instead of being based on (theoretically) infinite structured values like binary trees. That simplicity has benefits for the OI interface, in this case:

data OI
part :: OI -> (OI, OI)
getChar' :: OI -> Char
putChar' :: Char -> OI -> ()


See also