Difference between revisions of "Partibles for composing monads"
m (Changing to secure URLS for references and articles.) 
m (Minor formatting change) 

(8 intermediate revisions by 2 users not shown)  
Line 1:  Line 1:  
−  [[Category:Monad]] 

+  <i> 

−  [[Category:Proposals]] 

+  Having praised monads to the hilt, let me level one criticism. Monads tend to be an allornothing proposition. If you discover that you need interaction deep within your program, you must rewrite that segment to use a monad. If you discover that you need two sorts of interaction, you tend to make a single monad support both sorts. It seems to me that instead we should be able to move smoothly from no monads (no interactions) to one monad (a single form of interaction) to many monads (several independent forms of interactions). How to achieve this remains a challenge for the future. 

−  <blockquote>''Having praised monads to the hilt, let me level one criticism. Monads tend to be<br>an allornothing proposition. If you discover that you need interaction deep within<br>your program, you must rewrite that segment to use a monad. If you discover<br>that you need two sorts of interaction, you tend to make a single monad support<br>both sorts. It seems to me that instead we should be able to move smoothly from<br>no monads (no interactions) to one monad (a single form of interaction) to many<br>monads (several independent forms of interactions). How to achieve this remains a<br>challenge for the future.''</blockquote> 

+  </i> 

−  
+  * <tt>[https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.91.3579&rep=rep1&type=pdf How to Declare an Imperative], Philip Wadler.</tt> 

−  * [https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.91.3579&rep=rep1&type=pdf How to Declare an Imperative], Philip Wadler. 

−  Some sample definitions: 

+  <sub> </sub> 

+  Assuming the partible types being used are appropriately defined, then: 

<haskell> 
<haskell> 

−  class Partible a where 

+  instance Partible a => Monad ((>) a) where 

−  +  return x = \ u > case part u of !_ > x 

−  parts :: a > [a] 

−  +  m >>= k = \ u > case part u of 

−  +  (u1, u2) > case m u1 of !x > k x u2 

−  parts u = case part u of (u1, u2) > u1 : parts u2 

−  instance Partible a => Monad ((>) a) where 

+  m >> w = \ u > case part u of 

−  +  (u1, u2) > case m u1 of !_ > w u2 

−  m >>= k = \ u > case part u of (u1, u2) > (\ x > x `seq` k x u2) (m u1) 

−  m >> w = \ u > case part u of (u1, u2) > m u1 `seq` w u2 

−  fail s = \ u > part u `seq` error s 

−  data OI  abstract 

+  fail s = \ u > case part u of !_ > error s 

−  primPartOI :: OI > (OI, OI)  primitive 

−   type IO a = OI > a 

−  
−  instance Partible OI where part = primPartOI 

−  
−  
−   more primitives 

−  primGetChar :: OI > Char 

−  primPutChar :: Char > OI > () 

−  
−   copy 'n' paste from Wadler's paper 

−  type Dialogue = [Response] > [Request] 

−  data Request = Getq  Putq Char 

−  data Response = Getp Char  Putp 

−  
−  
−  respond :: Request > OI > Response 

−  respond Getq = primGetChar >>= return . Getp 

−  respond (Putq c) = primPutChar c >> return Putp 

−  
−  runDialogue :: Dialogue > OI > () 

−  runDialogue d = 

−  \ u > foldr seq () (yet (\ l > zipWith respond (d l) (parts u))) 

−  
−  
−  instance Partible a => MonadFix ((>) a) where 

−  mfix m = \ u > yet (\ x > m x u) 

−  
−  
−   to be made into an abstract data type... 

−  data Fresh a = Fresh (OI > a) OI 

−  
−  afresh :: (OI > a) > OI > Fresh a 

−  afresh g u = Fresh g u 

−  
−  instance Partible (Fresh a) where 

−  parts (Fresh g u) = [ Fresh g v  v < parts u ] 

−  
−  fresh :: Fresh a > [a] 

−  fresh (Fresh g u) = [ g v  v < parts u ] 

−  
−  instance Functor Fresh where 

−  fmap f (Fresh g u) = Fresh (f . g) u 

−  
−  
−   another primitive 

−  primGensym :: OI > Int 

−  
−  supplyInts :: OI > Fresh Int 

−  supplyInts = \ u > afresh primGensym u 

−  
−  
−   another abstract data type 

−  data Throw e 

−  curb :: (Throw e > a) > (e > OI > a) > OI > a 

−  catch :: (Throw e > a) > (e > Throw e > a) > Throw e > a 

−  throw :: e > Throw e > a 

−  
−  partThrow :: Throw e > (Throw e, Throw e) 

−  instance Partible (Throw e) where part = partThrow 

−  
−  
−  instance (Partible a, Partible b) => Partible (a, b) where 

−  parts (u, v) = zipWith (,) (parts u) (parts v) 

−  
−  instance (Partible a, Partible b) => Partible (Either a b) where 

−  parts (Left u) = map Left (parts u) 

−  parts (Right v) = map Right (parts v) 

−  
−  data Some a = Only a  More a (Some a) 

−  
−  instance Partible a => Partible (Some a) where 

−  parts (Only u) = map Only (parts u) 

−  parts (More u us) = zipWith More (parts u) (parts us) 

−  
−  type M1 a = (Fresh Int, OI) > a 

−  type M2 a = Either (Fresh a) OI > a 

−  type M3 a = Some (Either (Fresh Char) (Fresh Int)) > a 

−  type M4 a = (Throw IOException, Some (Either Float OI)) > a 

−   ...whatever suits the purpose 

−  
−  
−  class (Monad m1, Monad m2) => MonadCommute m1 m2 where 

−  mcommute :: m1 (m2 a) > m2 (m1 a) 

−  
−  instance (Partible a, Partible b) => MonadCommute ((>) a) ((>) b) where 

−  mcommute m = \ v u > m u v 

</haskell> 
</haskell> 

+  Furthermore: 

−  So what qualifies as being partible? 

+  <haskell> 

+  instance (Partible a, Monad ((>) a)) => MonadFix ((>) a) where 

+  mfix m = \ u > yet (\ x > m x u) 

−  A partible value can be used only once to generate new values that can be used for the same purpose. Think of a very large sheet of paper  new sheets can be made from it, other sheets can be made from those, etc, with the original sheet no longer in existence. Unlike paper sheets, partible values are intended to have no limits e.g. the result of applying <code>supplyInts</code>. 

+  instance (Partible a, Monad ((>) a), Partible b, Monad ((>) b)) => MonadCommute ((>) a) ((>) b) where 

+  mcommute g = \ v u > g u v 

−  If its violation causes a runtime error, the useonce property of partible values can help to maintain referential transparency in the effectful segments of a program; using another example from Wadler's paper minimally rewritten in Haskell syntax using <code>OI</code> values: 

+  instance (Monad m, Partible b, Monad ((>) b)) => MonadCommute m ((>) b) where 

−  
+  mcommute m = \ v > liftM ($ v) m 

−  <haskell> 

−  \ u > let 

−  x = (primPutChar 'h' u `seq` primPutChar 'a' u) 

−  in x `seq` x 

</haskell> 
</haskell> 

+  where: 

−  would trigger the error; the working version being: 

+  :{ 

+  <haskell> 

+  yet :: (a > a) > a 

+  yet f = f (yet f) 

−  <haskell> 

+  class Monad m => MonadFix m where 

−  +  mfix :: (a > m a) > m a 

−  x = (\ v > case part v of 

−  (v1, v2) > primPutChar 'h' v1 `seq` primPutChar 'a' v2) 

−  in 

−  \ u > case part u of 

−  (u1, u2) > x u1 `seq` x u2 

−  </haskell> 

−  
+  class (Monad m1, Monad m2) => MonadCommute m1 m2 where 

−  ...rather tedious, if it weren't for Haskell's standard monadic methods: 

+  mcommute :: m1 (m2 a) > m2 (m1 a) 

−  
−  <haskell> 

−  let 

−  x = primPutChar 'h' >> primPutChar 'a' 

−  in x >> x 

</haskell> 
</haskell> 

+  } 

+  Using partible types to define monadic ones can enable an intermediate approach to the use of effects, in contrast to the ''allornothing proposition'' of only using the monadic interface. In addition, if the definitions for such monadic types are ''visible'' (e.g. as type synonyms), this may also allow the manipulation of control in ways beyond what the monadic interface provides. 

−  Higherorder functions allows the manipulation of control e.g. <code>Prelude.until</code> in Haskell. As the definition of <code>runDialogue</code> shows, monadic types with visible definitions based on types of partible values may also allow the manipulation of control in ways beyond what the standard monadic methods provide. 

+   

−  
−  The patches for an initial implementation in GHC are available:[https://tidbits.neocities.org/partiblesforghc.html ''] 

−  
−  Other references and articles: 

−  
−  * [https://maartenfokkinga.github.io/utwente/mmf2001c.pdf An alternative approach to I/O], Maarten Fokkinga and Jan Kuper. 

−  
−  * <span style="color:#ba0000">Functional Pearl: On generating unique names</span>, Lennart Augustsson, Mikael Rittri and Dan Synek. 

−  
−  * [https://www.alsonkemp.com/haskell/reflectionsonleavinghaskell Reflections on leaving Haskell], Alson Kemp. 

−  
−  * [https://paul.bone.id.au/pub/pbone2016haskellsucks.pdf Haskell Sucks!], Paul Bone. 

−  
−  * <span style="color:#ba0000">NonImperative Functional Programming</span>, Nobuo Yamashita. 

−  
−  * [https://www.f.waseda.jp/terauchi/papers/toplaswitness.pdf Witnessing Side Effects], Tachio Terauchi and Alex Aiken. 

−  
−  * [https://www.cs.bham.ac.uk/~udr/papers/assign.pdf Assignments for Applicative Languages], Vipin Swarup, Uday S. Reddy and Evan Ireland. 

−  
−  * [https://www.cs.ru.nl/barendregt60/essays/hartel_vree/art10_hartel_vree.pdf Lambda Calculus For Engineers], Pieter H. Hartel and Willem G. Vree. 

−  
−  * [https://www.cs.nott.ac.uk/~pszgmh/clairvoyant.pdf CallbyNeed Is Clairvoyant CallbyValue], Jennifer Hackett and Graham Hutton. 

−  
−  * [http://h2.jaguarpaw.co.uk/posts/mtlstyleforfree MTL style for free], Tom Ellis. 

−  
−  * [https://accu.org/index.php/journals/2199 On ZeroSideEffect Interactive Programming, Actors, and FSMs], Sergey Ignatchenko. 

−  
−  * <span style="color:#ba0000">Functional I/O Using System Tokens</span>, Lennart Augustsson. 

−  
−  * <span style="color:#ba0000">I/O Trees and Interactive Lazy Functional Programming</span>, Samuel A. Rebelsky. 

−  
−  * <span style="color:#ba0000">Arborescent data structures and lazy evaluation: A new approach to numerical problems</span>, Manuel Carcenac. 

−  
See also: 
See also: 

−  * [[Sequential ordering of evaluation]] 

+  * [[Plainly partible]] 

−  
+  * [[Partible laws]] 

−  * [[Monomorphism by annotation of type variables]] 

+  * [[Burtonstyle nondeterminism]] 

−  
+  * [[MonadFix]] 

* [[Prelude extensions]] 
* [[Prelude extensions]] 

+  * [https://downloads.haskell.org/~ghc/7.8.4/docs/html/users_guide/bangpatterns.html Bang patterns] 

−  Thank you to those who commented on early drafts of this document. 

[[User:AtraversAtravers]] 04:31, 10 April 2018 (UTC) 
[[User:AtraversAtravers]] 04:31, 10 April 2018 (UTC) 

+  
+  [[Category:Monad]] 

+  [[Category:Proposals]] 
Latest revision as of 04:22, 27 April 2021
Having praised monads to the hilt, let me level one criticism. Monads tend to be an allornothing proposition. If you discover that you need interaction deep within your program, you must rewrite that segment to use a monad. If you discover that you need two sorts of interaction, you tend to make a single monad support both sorts. It seems to me that instead we should be able to move smoothly from no monads (no interactions) to one monad (a single form of interaction) to many monads (several independent forms of interactions). How to achieve this remains a challenge for the future.
 How to Declare an Imperative, Philip Wadler.
_{ } Assuming the partible types being used are appropriately defined, then:
instance Partible a => Monad ((>) a) where
return x = \ u > case part u of !_ > x
m >>= k = \ u > case part u of
(u1, u2) > case m u1 of !x > k x u2
m >> w = \ u > case part u of
(u1, u2) > case m u1 of !_ > w u2
fail s = \ u > case part u of !_ > error s
Furthermore:
instance (Partible a, Monad ((>) a)) => MonadFix ((>) a) where
mfix m = \ u > yet (\ x > m x u)
instance (Partible a, Monad ((>) a), Partible b, Monad ((>) b)) => MonadCommute ((>) a) ((>) b) where
mcommute g = \ v u > g u v
instance (Monad m, Partible b, Monad ((>) b)) => MonadCommute m ((>) b) where
mcommute m = \ v > liftM ($ v) m
where:
yet :: (a > a) > a yet f = f (yet f) class Monad m => MonadFix m where mfix :: (a > m a) > m a class (Monad m1, Monad m2) => MonadCommute m1 m2 where mcommute :: m1 (m2 a) > m2 (m1 a)
Using partible types to define monadic ones can enable an intermediate approach to the use of effects, in contrast to the allornothing proposition of only using the monadic interface. In addition, if the definitions for such monadic types are visible (e.g. as type synonyms), this may also allow the manipulation of control in ways beyond what the monadic interface provides.
See also:
 Plainly partible
 Partible laws
 Burtonstyle nondeterminism
 MonadFix
 Prelude extensions
 Bang patterns
Atravers 04:31, 10 April 2018 (UTC)