Personal tools

User:Michiexile/MATH198

From HaskellWiki

< User:Michiexile(Difference between revisions)
Jump to: navigation, search
Line 59: Line 59:
  
 
* [[User:Michiexile/MATH198/Lecture 8]]
 
* [[User:Michiexile/MATH198/Lecture 8]]
 +
** Algebras over monads
 +
** Algebras over endofunctors
 +
** Initial algebras and recursion
 +
** Lambek's lemma
  
 
* [[User:Michiexile/MATH198/Lecture 9]]
 
* [[User:Michiexile/MATH198/Lecture 9]]
 +
** Catamorphisms
 +
** Anamorphisms
 +
** Hylomorphisms
 +
** Metamorphisms
 +
** Paramorphisms
 +
** Apomorphisms
 +
** Properties of adjunctions, examples of adjunctions
  
 
* [[User:Michiexile/MATH198/Lecture 10]]
 
* [[User:Michiexile/MATH198/Lecture 10]]
 
+
** Power objects
 
+
** Classifying objects
 
+
** Topoi
Things yet to cover:
+
** Internal logic
 
+
Ana/Kata/Hylo/Zygo-morphism.
+
 
+
M-algebras.
+
 
+
Yoneda's lemma.
+
 
+
Freyd's functor theorem.
+
 
+
Adjunction properties and theorems.
+
 
+
Examples of Adjunctions.
+
 
+
 
+
** Review.
+
 
+
** Topos.
+
** Power objects.
+
** Internal logic.
+
 
+
** Recursion as a categorical construction.
+
** Recursive categories.
+
** Recursion as fixed points of monad algebras.
+
** Recursion using special morphisms.
+
*** Hylo-
+
*** Zygo-
+
*** et.c.
+
 
+
** Properties of adjunctions.
+
** Examples of adjunctions.
+
** Things that are not adjunctions.
+
 
+
** Yoneda Lemma.
+
*** Adjoints are unique up to isomorphism.
+

Revision as of 18:43, 17 November 2009

Course overview

Page is work in progress for background material for the Fall 2009 lecture course MATH198[1] on Category Theory and Functional Programming that I am planning to give at Stanford University.

Single unit course. 10 lectures. Each lecture is Wednesday 4.15-5.05 in 380F.


  • User:Michiexile/MATH198/Lecture 1
    • Category: Definition and examples.
    • Concrete categories.
      • Set.
      • Various categories capturing linear algebra.
    • Small categories.
      • Partial orders.
      • Monoids.
      • Finite groups.
    • Haskell-Curry isomorphism.




  • User:Michiexile/MATH198/Lecture 9
    • Catamorphisms
    • Anamorphisms
    • Hylomorphisms
    • Metamorphisms
    • Paramorphisms
    • Apomorphisms
    • Properties of adjunctions, examples of adjunctions